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Convolutional Neural Networks for LVCSR
NN-HMM Hybrid, acoustic model on logmel features

[Abdel-Hamid et al., 2012] [Sainath et al., 2013]
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NN-HMM Hybrid speech recognition system
A sloppy picture

CNN Acoustic Model

p(HMM state | X)
(batchsize x uttLen x #states)

“The cat sat on the mat”,
...,

X Reference transcriptions
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NN-HMM Hybrid speech recognition system
XE Cross-Entropy Training

CNN Acoustic Model
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NN-HMM Hybrid speech recognition system
Decoding: getting a WER score
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NN-HMM Hybrid speech recognition system
ST Sequence Training

CNN Acoustic Model

p(HMM state | X)
(batchsize x uttLen x #states)

“The cat sat on the mat”,
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X Reference transcriptions
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Convolutional Neural Networks for LVCSR
Why CNN is the right acoustic model

Of course CNNs!
In speech, all NNs are used convolutional anyway

So why not keep spatial (time, frequency) resolution?
Efficient parametrization
Increased depth

But...

... the CNN assumptions are broken!
Images: good feature detectors are translation invariant
Speech: translation invariance in , ?

... aren‘t recurrent networks more powerful?
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Computer Vision is not Speech Recognition
ImageNet vs Switchboard

ImageNet SWB-1 300h SWB 2000h
# frames/images 1.2M 100M 720M
# classes 1k 8.2k 32k
image size 224 × 224 40 × 23
Class imbalance No prob Huge (25% silence)
Learn Invariance Viewpoint Speaker var (Pitch, Accent)

Illumination Structured Noise, . . .
Partial obs
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What just happened in Computer Vision?
VGG Convolutional Neural Networks

til 2011: Handcrafted + SVM

2012: Alexnet: GPUs, ReLU

2013: Clarifai, Overfeat

2014: GoogleNet,

2015: Residual Networks

[Simonyan and Zisserman, 2014]
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Result on switchboard
A first look
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Multilingual CNN
BABEL - Leveraging many small data sets
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Multilingual CNN
BABEL - Leveraging many small data sets
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Multiscale Features

Context +/-5

Context +/-10, stride 2

Context +/- 20, stride 4
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Multiscale Features
Results on BABEL
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How will we process a full utterance?
Sequence Training, test time

➔ yt

➔ yt+1

➔ yt+2

➔ …, yt, yt+1, yt+2, ...

(more frames)

(more utterances)

A B

A: Spliced evaluation, like during Cross-Entropy training

B: Efficient evaluation

- possible with any model?
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Result on switchboard
Performance hit from architectural constraint
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Batch Normalization

Cross-Entropy training: No Problem.
Regular Spatial BatchNorm
During Sequence Training:

Spliced: GPU mem is full with 1 utterance
Efficient: stack multiple utts in a batch
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Result on switchboard
Getting performance back with Batch Normalization
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Result on switchboard
With all bells and whistles (ensemble, big LM)
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Training details

Optimization
Fast: Adam + SGD finetuning
Better: Pure SGD (with nesterov acceleration)

Unbalanced data: sample from pi = f γ
i∑
j
f γ
j
.

Start from random initialization
[−a, a] where a = (kW× kH× numInputFeatureMaps)− 1

2 .
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Analysis
Objective mismatch

Some objectives we don’t care about
Frame-level cross-entropy Lu = −

∑
t log yut(sut)

CTC for E2E training of RNNs Lu =
∑

π∈B−1(lu)
∏Tu

t=1 y t
πt

Expected Sentence Error, e.g. MMI: Lu = log p(X |Su)P(Wu)∑
W

p(X |S)P(W )

What we do care about
Word Error Rate

(?) – to publish papers
Real life usability

Certain words are more important: weighted word error rate?
Segmentation into utterances, silence detection
Domain mismatch: noise, accents
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Analysis
Objective mismatch - How well aligned are XE and WER?

E van den Berg, B Ramabhadran, M Picheny, “Neural network training variance and performance evaluation in
speech”
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Analysis

Expect filters to be sensitive to certain frequency regions?

Help the filters to be sensitive to certain frequency regions
Bias per-frequency
. . . or batchnorm statistics per (featuremap, frequency)
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Conclusion
Overview

Very deep convolutional networks
Small 3× 3 kernels

Multiple convs before pooling

Best arch: 10 convs, 14 total

10.6% improvement over classic CNNs (300h, CE)

Multilingual training
Shared convolutional layers

Multiscale features
Same computation, more context

c© 2016 IBM Corporation


