Dense Prediction on Sequences with Time-Dilated Convolutions for Speech Recognition

Tom Sercu, Vaibhava Goel

NIPS 2016 End-to-end Learning for Speech and Audio Processing Workshop

http://arxiv.org/abs/1611.09288

Convolutional Neural Networks for LVCSR

2-stage training scheme: Cross-Entropy (XE) vs Sequence Training (ST), test time

Convolutional Neural Networks for LVCSR

2-stage training scheme: Cross-Entropy (XE) vs Sequence Training (ST), test time

Semantic segmentation

Semantic segmentation

Depth map prediction

Depth map prediction

Semantic segmentation

Framewise classification = dense pixelwise prediction!

Dense Pixelwise Prediction with Convnets

Patch-by-patch vs efficient

(a) Patch-by-patch scanning for CNN based pixelwise classification

Prediction Map Target Label Map

Sequential: Framewise classification

Spliced (bad) vs efficient (good)

B Efficient convolutional evaluation. Dense prediction viewpoint.

Sequential: Framewise classification

Spliced (bad) vs efficient (good)

B Efficient convolutional evaluation. Dense prediction viewpoint.

Can we have time-pooling into the CNN?

Time-pooling

XE: Toy CNN with pooling in time

Time-pooling

ST: Downsampling is a problem

$\mathsf{Time-pooling} \to \mathsf{Time-dilated} \ \mathsf{convolutions}$

ST: Solution to downsampling

Based on Spatial dilated convolution [Li et al., 2014, Yu and Koltun, 2016] or OverFeat [Sermanet et al., 2013]

With dense prediction viewpoint for ST

• CNNs with strided pooling in time

- CNNs with strided pooling in time
 - Better performance [Sercu et al., 2016, Sercu and Goel, 2016]

- CNNs with strided pooling in time
 - Better performance [Sercu et al., 2016, Sercu and Goel, 2016]
- While maintaining efficient dense prediction, enabling:

- CNNs with strided pooling in time
 - Better performance [Sercu et al., 2016, Sercu and Goel, 2016]
- While maintaining efficient dense prediction, enabling:
 - Efficient convolutional evaluation

- CNNs with strided pooling in time
 - Better performance [Sercu et al., 2016, Sercu and Goel, 2016]
- While maintaining efficient dense prediction, enabling:
 - Efficient convolutional evaluation
 - Batch Normalization

- CNNs with strided pooling in time
 - Better performance [Sercu et al., 2016, Sercu and Goel, 2016]
- While maintaining efficient dense prediction, enabling:
 - Efficient convolutional evaluation
 - Batch Normalization
- End-to-end models with CNNs
 - Can accept downsampling
 - But this allows to pool more than acceptable amount of downsampling

Result on switchboard

Big n-gram LM

	SWB	CH
IBM 2015 DNN+RNN+CNN	8.8 †	15.3 †
IBM 2016 RNN+VGG+LSTM	7.6 †	13.7 †
MSR 2016 ResNet *	8.6	14.8
MSR 2016 LACE *	8.3	14.8
MSR 2016 BLSTM *	8.7	16.2
VGG + BN	8.1	15.9
VGG + BN + pool	7.7	14.5

- † model combination / * smaller LM
- Note: simple language model. Followed by: LM rescoring

Figures sources and references

- Slide 3 (Semantic Segmentation)
 [Long et al., 2015] Figure 6
- Slide 3 (Depth map prediction)
 [Eigen et al., 2014] Figure 4
- Slide 4 (Patches)
 [Li et al., 2014] Figure 1

Eigen, D., Puhrsch, C., and Fergus, R. (2014).

Depth map prediction from a single image using a multi-scale deep network.

In Advances in Neural Information Processing Systems, pages 2366–2374.

- Li, H., Zhao, R., and Wang, X. (2014). Highly efficient forward and backward propagation of convolutional neural networks for pixelwise classification. arXiv:1412.4526.
- Long, J., Shelhamer, E., and Darrell, T. (2015). Fully convolutional networks for semantic segmentation. *CVPR*.
- Sercu, T. and Goel, V. (2016). Advances in very deep convolutional neural networks for lvcsr. Proc. Interspeech.
- Sercu, T., Puhrsch, C., Kingsbury, B., and LeCun, Y. (2016). Very deep multilingual convolutional neural networks for lvcsr. *Proc. ICASSP.*

Sermanet, P., Eigen, D., Zhang, X., Mathieu, M., Fergus, R., and LeCun, Y. (2013). Overfeat: Integrated recognition, localization and detection using convolutional networks. arXiv:1312.6229.

Yu, F. and Koltun, V. (2016). Multi-scale context aggregation by dilated convolutions. *proc ICLR*.

Thank you! Questions?

Here's a cake which doesn't have anything to do with the talk

