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IBM Watson

Convolutional Neural Networks for LVCSR
2-stage training scheme: Cross-Entropy (XE) vs Sequence Training (ST), test time
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IBM Watson

Dense Pixelwise Prediction in Computer Vision

Semantic segmentation
Depth map prediction

Framewise classification = dense pixelwise prediction!
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Dense Pixelwise Prediction with Convnets
Patch-by-patch vs efficient
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IBM Watson

Sequential: Framewise classification
Spliced (bad) vs efficient (good)

CNN
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A    Spliced, inefficient.                       Classification viewpoint

B   Efficient convolutional evaluation.   Dense prediction viewpoint.

Can we have time-pooling into the CNN?
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Time-pooling
XE: Toy CNN with pooling in time
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IBM Watson

Time-pooling
ST: Downsampling is a problem
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Time-pooling → Time-dilated convolutions
ST: Solution to downsampling

conv3,1

pool2,1
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Based on Spatial dilated convolution [Li et al., 2014, Yu and Koltun, 2016] or OverFeat [Sermanet et al., 2013]
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What did we gain?
With dense prediction viewpoint for ST

CNNs with strided pooling in time

Better performance [Sercu et al., 2016, Sercu and Goel, 2016]

While maintaining efficient dense prediction, enabling:

Efficient convolutional evaluation
Batch Normalization

End-to-end models with CNNs
Can accept downsampling
But this allows to pool more than acceptable amount of downsampling
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Result on switchboard
Big n-gram LM

SWB CH
IBM 2015 DNN+RNN+CNN 8.8 † 15.3 †
IBM 2016 RNN+VGG+LSTM 7.6 † 13.7 †
MSR 2016 ResNet ∗ 8.6 14.8
MSR 2016 LACE ∗ 8.3 14.8
MSR 2016 BLSTM ∗ 8.7 16.2
VGG + BN 8.1 15.9
VGG + BN + pool 7.7 14.5

† model combination / ∗ smaller LM

Note: simple language model. Followed by: LM rescoring
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Figures sources and references

Slide 3 (Semantic
Segmentation)
[Long et al., 2015] Figure 6
Slide 3 (Depth map
prediction)
[Eigen et al., 2014] Figure
4
Slide 4 (Patches)
[Li et al., 2014] Figure 1
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Thank you! Questions?
Here’s a cake which doesn’t have anything to do with the talk
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