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Convolutional Neural Networks for LVCSR
Hybrid, acoustic model on logmel features

[Abdel-Hamid et al., 2012] [Sainath et al., 2013]
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Convolutional Neural Networks for LVCSR
Why CNN is the right acoustic model

Of course CNNs!

DNN is a specific type of CNN
Why not keep spatial (time, frequency) resolution?

Efficient parametrization
Increased depth

But...

... the CNN assumptions are broken!
Images: good feature detectors are translation invariant
Speech: translation invariance in , ?

... aren‘t recurrent networks more powerful?
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What just happened in Computer Vision?
VGG Convolutional Neural Networks

til 2011: Handcrafted + SVM

2012: Alexnet: GPUs, ReLU

2013: Clarifai, Overfeat

2014: GoogleNet,

2015: Residual Networks

[Simonyan and Zisserman, 2014]
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Results on 300-h switchboard - CE

WER (CE)
Classic 512 [Soltau et al., 2014] 13.2
Classic+AD+Maxout [Saon et al., 2015] 12.6
Classic 256 ReLU (Ada+SGD)

13.8

6 conv (Ada+SGD)

13.1

8 conv (SGD)

11.9

10 conv (SGD)

11.8
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Multilingual CNN
Model
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Multiscale Features

Context +/-5

Context +/-10, stride 2

Context +/- 20, stride 4
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Optimization and tricks

Optimization
Fast: Adam + SGD finetuning
Better: Pure SGD (with nesterov acceleration)

Unbalanced data: sample from pi = f γ
i∑
j
f γ
j
.

Start from random initialization
[−a, a] where a = (kW × kH × numInputFeatureMaps)− 1

2 .
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Conclusion
Overview

Very deep convolutional networks
Small 3 × 3 kernels

Multiple convs before pooling

Best arch: 10 convs, 14 total

10.6% improvement over classic CNNs (300h, CE)

Multilingual training
Shared convolutional layers

Multiscale features
Same computation, more context
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