McGan: Mean and Covariance Feature Matching GAN

Youssef Mroueh*, <u>Tom Sercu</u>* and Vaibhava Goel

AI Foundations IBM T.J. Watson Research Center, NY

ICML August 2017

Learning Generative Adversarial Networks

[Goodfellow et al. 2014]

Fig from Wasserstein GAN [Arjovsky, Chintala and Bottou 2017]

• Loss uncorrelated with sample quality.

- Loss uncorrelated with sample quality.
- Vanishing gradient needs ad-hoc $\log(D(G(z)))$ for G training (so different loss for D and G).

- Loss uncorrelated with sample quality.
- Vanishing gradient needs ad-hoc $\log(D(G(z)))$ for G training (so different loss for D and G).
- Optimizing a problematic metric [Arjovsky and Bottou, 2017]

- Loss uncorrelated with sample quality.
- Vanishing gradient needs ad-hoc $\log(D(G(z)))$ for G training (so different loss for D and G).
- Optimizing a problematic metric [Arjovsky and Bottou, 2017]
- Unstable training, mode collapse.

- Loss uncorrelated with sample quality.
- Vanishing gradient needs ad-hoc $\log(D(G(z)))$ for G training (so different loss for D and G).
- Optimizing a problematic metric [Arjovsky and Bottou, 2017]
- Unstable training, mode collapse.

We focus on GAN loss & the metric between distributions

$$d_{\mathcal{F}}(\mathbb{P},\mathbb{Q}) = \sup_{f\in\mathcal{F}} \left\{ \underset{x\sim\mathbb{P}}{\mathbb{E}} f(x) - \underset{x\sim\mathbb{Q}}{\mathbb{E}} f(x) \right\}$$

$$d_{\mathcal{F}}(\mathbb{P},\mathbb{Q}) = \sup_{f\in\mathcal{F}} \left\{ \underset{x\sim\mathbb{P}}{\mathbb{E}} f(x) - \underset{x\sim\mathbb{Q}}{\mathbb{E}} f(x) \right\}$$

 \mathcal{F} is a symmetric set of measurable, **bounded**, real valued functions. Function class \mathcal{F} defines metric.

$$d_{\mathcal{F}}(\mathbb{P},\mathbb{Q}) = \sup_{f\in\mathcal{F}} \left\{ \underset{x\sim\mathbb{P}}{\mathbb{E}} f(x) - \underset{x\sim\mathbb{Q}}{\mathbb{E}} f(x) \right\}$$

 \mathcal{F} is a symmetric set of measurable, **bounded**, real valued functions. Function class \mathcal{F} defines metric.

Examples:

- Maximum Mean Discrepancy:

$$\mathcal{F} = \{ f \in \mathcal{H}_k \text{ RKHS }, \|f\|_{\mathcal{H}_k} \le 1 \}$$

-Wasserstein Distance: $\mathcal{F} = \{f : ||f||_{Lip} \le 1\}$

$$d_{\mathcal{F}}(\mathbb{P},\mathbb{Q}) = \sup_{f\in\mathcal{F}} \left\{ \underset{x\sim\mathbb{P}}{\mathbb{E}} f(x) - \underset{x\sim\mathbb{Q}}{\mathbb{E}} f(x) \right\}$$

 ${\mathcal F}$ is a symmetric set of measurable, **bounded**, real valued functions. Function class ${\mathcal F}$ defines metric.

Examples:

- Maximum Mean Discrepancy:

$$\mathcal{F} = \{ f \in \mathcal{H}_k \text{ RKHS }, \|f\|_{\mathcal{H}_k} \le 1 \}$$

-Wasserstein Distance: $\mathcal{F} = \{f : ||f||_{Lip} \le 1\}$

Use IPM for GAN training:

$$\min_{\theta} d_{\mathcal{F}}(\mathbb{P}_r, \mathbb{Q}_{\theta})$$

Maximum Mean Discrepancy in RKHS

 Φ is infinite dimensional map corresponding to kernel k

Kernel mean embedding: $\mu_{\mathbb{P}} = \mathbb{E}_{x \sim \mathbb{P}} \Phi(x)$

Maximum Mean Discrepancy in RKHS

 Φ is infinite dimensional map corresponding to kernel k

Kernel mean embedding: $\mu_{\mathbb{P}} = \mathbb{E}_{x \sim \mathbb{P}} \Phi(x)$

Fig: [Muandet et al., 2016]

Kernel Mean Embedding of Distributions

Definition 3.1 (Berlinet and Thomas-Agnan 2004, Smola et al. 2007). Suppose that the space $M^1_+(\mathcal{X})$ consists of all probability measures \mathbb{P} on a measurable space (\mathcal{X}, Σ) . The kernel mean embedding of probability measures in $M^1_+(\mathcal{X})$ into an RKHS \mathscr{H}

Maximum Mean Discrepancy in RKHS

 Φ is infinite dimensional map corresponding to kernel k

Kernel mean embedding: $\mu_{\mathbb{P}} = \mathbb{E}_{x \sim \mathbb{P}} \Phi(x)$

Fig: [Muandet et al., 2016]

Kernel Mean Embedding of Distributions

 $d_{\mathcal{F}}(\mathbb{P},\mathbb{Q}) = \sup_{\substack{f, \|f\|_{\mathcal{H}} \leq 1 \\ f, \|f\|_{\mathcal{H}} \leq 1$

McGan [Mroueh, Sercu and Goel 2017]

Neural Network Embedding of Distributions

Neural Network $\Phi_{\omega} : \mathcal{X} \to \mathbb{R}^m, \omega \in \Omega$

Separating Hyperplane

A Neural Network Embedding of the distribution

Refresher: dual norms

$$d_{\mathcal{F}}(\mathbb{P},\mathbb{Q}) = \sup_{f\in\mathcal{F}} \left\{ \underset{x\sim\mathbb{P}}{\mathbb{E}} f(x) - \underset{x\sim\mathbb{Q}}{\mathbb{E}} f(x) \right\}$$

Specify NN $\Phi_{\omega}(x)$ and f(x) linear in the feature space. $\mathcal{F} = \{f(x) = \langle v, \Phi_{\omega}(x) \rangle\}$

$$d_{\mathcal{F}}(\mathbb{P},\mathbb{Q}) = \sup_{f\in\mathcal{F}} \left\{ \underset{x\sim\mathbb{P}}{\mathbb{E}} f(x) - \underset{x\sim\mathbb{Q}}{\mathbb{E}} f(x) \right\}$$

Specify NN $\Phi_{\omega}(x)$ and f(x) linear in the feature space.

$$\mathcal{F} = \{ f(x) = \langle v, \Phi_{\omega}(x) \rangle \}$$

$$d_{\mathcal{F}}(\mathbb{P},\mathbb{Q}) = \sup_{f\in\mathcal{F}} \left\{ \underset{x\sim\mathbb{P}}{\mathbb{E}} f(x) - \underset{x\sim\mathbb{Q}}{\mathbb{E}} f(x) \right\}$$

Specify NN $\Phi_{\omega}(x)$ and f(x) linear in the feature space.

$$\mathcal{F} = \{ f(x) = \langle v, \Phi_{\omega}(x) \rangle \}$$

$$d_{\mathcal{F}_{v,\omega,p}}(\mathbb{P},\mathbb{Q}) = \max_{\omega \in \Omega} \|\mu_{\omega}(\mathbb{P}) - \mu_{\omega}(\mathbb{Q})\|_{q}$$
$$\frac{1}{p} + \frac{1}{q} = 1 \quad \text{Dual}$$

$$d_{\mathcal{F}}(\mathbb{P},\mathbb{Q}) = \sup_{f\in\mathcal{F}} \left\{ \underset{x\sim\mathbb{P}}{\mathbb{E}} f(x) - \underset{x\sim\mathbb{Q}}{\mathbb{E}} f(x) \right\}$$

Specify NN $\Phi_{\omega}(x)$ and f(x) linear in the feature space.

$$\mathcal{F} = \{ f(x) = \langle v, \Phi_{\omega}(x) \rangle \}$$

$$d_{\mathcal{F}_{v,\omega,p}}(\mathbb{P},\mathbb{Q}) = \max_{\omega \in \Omega} \|\mu_{\omega}(\mathbb{P}) - \mu_{\omega}(\mathbb{Q})\|_{\mathbf{q}}$$
$$\frac{1}{p} + \frac{1}{q} = 1 \quad \text{Dual}$$

 $\mathrm{IPM}_{\mu,1}$

12

 IPM_{μ}

13

McGan [Mroueh, Sercu and Goel 2017]

Definition 3.1 (Berlinet and Thomas-Agnan 2004, Smola et al. 2007). Suppose that the space $M^1_+(\mathcal{X})$ consists of all probability measures \mathbb{P} on a measurable space (\mathcal{X}, Σ) . The kernel mean embedding of probability measures in $M^1_+(\mathcal{X})$ into an RKHS \mathscr{H} endowed with a reproducing kernel $k : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is defined by a mapping

$$\mu: M^1_+(\mathcal{X}) \longrightarrow \mathscr{H}, \quad \mathbb{P} \longmapsto \int k(\mathbf{x}, \cdot) \, \mathrm{d}\mathbb{P}(\mathbf{x}).$$
15

2007). Suppose that the space ${}^{1}\!\!M^{1}_{+}(\mathcal{X})$ consists of all probabil-

Introduce $2 \times K$ orthonormal vectors $\{u_1, \dots, u_K\}$ and $\{v_1, \dots, v_K\}$. And assemble into $U = [u_1|u_2|\dots|u_K]$ $V = [v_1|v_2|\dots|v_K]$. $f(x) = \langle U^{\top} \Phi_{\omega}(x), V^{\top} \Phi_{\omega}(x) \rangle$ $\mathcal{F} = \{f_{\omega,U,V}(x) \mid U, V \in \mathbb{R}^{m \times K}, u^{\top} U = I_K, v^{\top} U = I_K, v^{\top} V = I_K, v^{\top} V = I_K, \omega \in \Omega\}$

Introduce $2 \times K$ orthonormal vectors $\{u_1, \dots, u_K\}$ and $\{v_1, \dots, v_K\}$. And assemble into $U = [u_1|u_2|\dots|u_K]$ $V = [v_1|v_2|\dots|v_K]$. $f(x) = \langle U^{\top} \Phi_{\omega}(x), V^{\top} \Phi_{\omega}(x) \rangle$ $\mathcal{F} = \{f_{\omega,U,V}(x) \mid U, V \in \mathbb{R}^{m \times K}, u^{\top} U = I_K, v^{\top} U = I_K, v^{\top} V = I_K, v^{\top} V = I_K, \omega \in \Omega\}$

Introduce $2 \times K$ orthonormal vectors $\{u_1, \ldots, u_K\}$ and $\{v_1, \ldots, v_K\}$. And assemble into $U = [u_1 | u_2 | \dots | u_K]$ $V = [v_1 | v_2 | \dots | v_K].$ $f(x) = \left\langle U^{\top} \Phi_{\omega}(x), V^{\top} \Phi_{\omega}(x) \right\rangle$ $\mathcal{F} = \{ f_{\omega, U, V}(x) \mid U, V \in \mathbb{R}^{m \times K},$ $U^{\dagger}U = I_{\mathcal{K}}.$ $= \sum u_j^{\top} [\Phi_{\omega}(x) \Phi_{\omega}(x)^{\top}] v_j$ $V^{\top}V = I_{\mathcal{K}}.$ j=1= Trace $(\mathbf{U}^{\top}[\Phi_{\omega}(\mathbf{x})\Phi_{\omega}(\mathbf{x})^{\top}]\mathbf{V})$ $\omega \in \Omega$ $\mathbb{E}_{x \sim \mathbb{P}} f(x) = \mathbb{E}_{x \sim \mathbb{P}} \operatorname{Trace} \left(\mathbf{U}^{\top} [\Phi_{\omega}(\mathbf{x}) \Phi_{\omega}(\mathbf{x})^{\top}] \mathbf{V} \right)$ = Trace $(\mathbb{E}_{\omega} \mathbf{U}^{\top} [\Phi_{\omega}(\mathbf{x}) \Phi_{\omega}(\mathbf{x})^{\top}] \mathbf{V})$ = Trace $(\mathbf{U}^{\top} \mathbb{E} \left[\Phi_{\omega}(\mathbf{x}) \Phi_{\omega}(\mathbf{x})^{\top} \right] \mathbf{V})$ = Trace $(\mathbf{U}^{\top} \boldsymbol{\Sigma}_{\omega}(\mathbb{P}) \mathbf{V})$

Introduce $2 \times K$ orthonormal vectors $\{u_1, \ldots, u_K\}$ and $\{v_1, \ldots, v_K\}$. And assemble into $U = [u_1 | u_2 | \dots | u_K]$ $V = [v_1 | v_2 | \dots | v_K].$ $f(x) = \left\langle U^{\top} \Phi_{\omega}(x), V^{\top} \Phi_{\omega}(x) \right\rangle$ $\mathcal{F} = \{ f_{\omega, U, V}(x) \mid U, V \in \mathbb{R}^{m \times K},$ $U^{\dagger}U = I_{\mathcal{K}}.$ $= \sum u_j^{\top} [\Phi_{\omega}(x) \Phi_{\omega}(x)^{\top}] v_j$ $V^{\top}V = I_{\mathcal{K}}.$ j=1 $\omega \in \Omega$ = Trace $(\mathbf{U}^{\top}[\Phi_{\omega}(\mathbf{x})\Phi_{\omega}(\mathbf{x})^{\top}]\mathbf{V})$ $\mathbb{E}_{x \sim \mathbb{P}} f(x) = \mathbb{E}_{x \sim \mathbb{P}} \operatorname{Trace} \left(\mathbf{U}^{\top} [\Phi_{\omega}(\mathbf{x}) \Phi_{\omega}(\mathbf{x})^{\top}] \mathbf{V} \right)$ = Trace $(\mathbb{E}_{\mathbf{x} \sim \mathbb{P}} \mathbf{U}^{\top} [\Phi_{\omega}(\mathbf{x}) \Phi_{\omega}(\mathbf{x})^{\top}] \mathbf{V})$ = Trace $(\mathbf{U}^{\top} \mathbb{E} \left[\Phi_{\omega}(\mathbf{x}) \Phi_{\omega}(\mathbf{x})^{\top} \right] \mathbf{V})$ = Trace $(\mathbf{U}^{\top} \boldsymbol{\Sigma}_{\boldsymbol{\omega}}(\mathbb{P}) \mathbf{V})$

$$d_{\mathcal{F}}(\mathbb{P}, \mathbb{Q}) = \sup_{f \in \mathcal{F}} \left\{ \underset{x \sim \mathbb{P}}{\mathbb{E}} f(x) - \underset{x \sim \mathbb{Q}}{\mathbb{E}} f(x) \right\}$$
$$f(x) = \text{Trace} \left(\mathbf{U}^{\top} [\Phi_{\omega}(\mathbf{x}) \Phi_{\omega}(\mathbf{x})^{\top}] \mathbf{V} \right)$$

$$d_{\mathcal{F}}(\mathbb{P}, \mathbb{Q}) = \sup_{f \in \mathcal{F}} \left\{ \underset{x \sim \mathbb{P}}{\mathbb{E}} f(x) - \underset{x \sim \mathbb{Q}}{\mathbb{E}} f(x) \right\}$$
$$f(x) = \text{Trace} \left(\mathbf{U}^{\top} [\Phi_{\omega}(\mathbf{x}) \Phi_{\omega}(\mathbf{x})^{\top}] \mathbf{V} \right)$$

$$d_{\mathcal{F}}(\mathbb{P}, \mathbb{Q}) = \sup_{f \in \mathcal{F}} \left\{ \underset{x \sim \mathbb{P}}{\mathbb{E}} f(x) - \underset{x \sim \mathbb{Q}}{\mathbb{E}} f(x) \right\}$$
$$f(x) = \text{Trace} \left(\mathbf{U}^{\top} [\Phi_{\omega}(\mathbf{x}) \Phi_{\omega}(\mathbf{x})^{\top}] \mathbf{V} \right)$$

$$d_{\mathcal{F}_{U,V,\omega}}(\mathbb{P},\mathbb{Q}) = \max_{\omega \in \Omega} \max_{U,V \in \mathcal{O}_{m,k}} Trace \left[U^{\top} (\Sigma_{\omega}(\mathbb{P}) - \Sigma_{\omega}(\mathbb{Q}))V \right]$$
Primal

$$d_{\mathcal{F}_{U,V,\omega}}(\mathbb{P},\mathbb{Q}) = \max_{\omega \in \Omega} \left\| \left[\Sigma_{\omega}(\mathbb{P}) - \Sigma_{\omega}(\mathbb{Q}) \right]_{k} \right\|_{*}$$

Truncated Nuclear Norm Dual

a) IPM $_{\mu,2}$: Level sets of $f(x) = \langle v^*, \Phi_{\omega}(x) \rangle$ $v^* = \frac{\mu_w(\mathbb{P}) - \mu_w(\mathbb{Q})}{\|\mu_w(\mathbb{P}) - \mu_w(\mathbb{Q})\|_2}.$

a) IPM $_{\mu,2}$: Level sets of $f(x) = \langle v^*, \Phi_{\omega}(x) \rangle$ $v^* = \frac{\mu_w(\mathbb{P}) - \mu_w(\mathbb{Q})}{\|\mu_w(\mathbb{P}) - \mu_w(\mathbb{Q})\|_2}.$

b) IPM Σ : Level sets of $f(x) = \sum_{j=1}^{k} \langle u_j, \Phi_\omega(x) \rangle \langle v_j, \Phi_\omega(x) \rangle$ $k = 3, u_j, v_j$ left and right singular vectors of $\Sigma_w(\mathbb{P}) - \Sigma_w(\mathbb{Q})$.

IPM_{Σ}

Conditional generation using the labels on Cifar , with an auxiliary classifier (CE term) \$\$ IPM_{\Sigma}\$, k=16\$

Cifar-10 Inception scores of our models and baselines.

	Cond $(+L)$	Uncond $(+L)$	Uncond (-L)
L1+Sigma	7.11 ± 0.04	6.93 ± 0.07	6.42 ± 0.09
L2+Sigma	7.27 ± 0.04	6.69 ± 0.08	6.35 ± 0.04
Sigma	$\textbf{7.29}\pm\textbf{0.06}$	$\textbf{6.97} \pm \textbf{0.10}$	$\textbf{6.73} \pm \textbf{0.04}$
WGAN	3.24 ± 0.02	5.21 ± 0.07	6.39 ± 0.07
BEGAN [Berthelot et al., 2017]			5.62
Impr. GAN "-LS" [Salimans et al., 2016]		6.83 ± 0.06	
Impr. GAN Best [Salimans et al., 2016]		8.09 ± 0.07	

DCGAN architecture, 32x32, with 3 extra layers.

• Efficient: no need to compute the covariance matrix explicitly!

- Efficient: no need to compute the covariance matrix explicitly!
- k-components as in PCA, targeting modes of the data.

- Efficient: no need to compute the covariance matrix explicitly!
- k-components as in PCA, targeting modes of the data.
- Meaningful and stable loss between distributions.

Questions?