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Learning Generative Adversarial Networks

z ⇠ N (0, Ik)

g✓(z)

Q✓Pr

2
[Goodfellow et al. 2014]



Motivation: Known Issues in GAN Training

Fig from Wasserstein GAN [Arjovsky, Chintala and Bottou 2017]
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Motivation: Known Issues in GAN Training

• Loss uncorrelated with sample quality.

• Vanishing gradient needs ad-hoc log(D(G(z)) for G training                
(so different loss for D and G).

• Optimizing a problematic metric [Arjovsky and Bottou, 2017]

• Unstable training, mode collapse.

We focus on GAN loss & the metric between distributions
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Examples:

- Maximum Mean Discrepancy:

F = {f 2 Hk RKHS , kfkHk
 1}

-Wasserstein Distance: F = {f : kfkLip  1}

Use IPM for GAN training:
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✓
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Maximum Mean Discrepancy in RKHS

� is infinite dimensional map corresponding to kernel k
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Kernel mean embedding: µP = E
x⇠P�(x)



Maximum Mean Discrepancy in RKHS
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Figure 3.2: Embedding of marginal distributions: Each distribution is mapped into
a RKHS via an expectation operation.

Definition 3.1 (Berlinet and Thomas-Agnan 2004, Smola et al.
2007). Suppose that the space M1

+(X ) consists of all probabil-
ity measures P on a measurable space (X , Σ). The kernel mean
embedding of probability measures in M1

+(X ) into an RKHS H

endowed with a reproducing kernel k : X ×X → R is defined by a
mapping

µ : M1
+(X ) −→H , P $−→

∫
k(x, ·) dP(x).

Next, we provide the conditions under which the embedding µP

exists and belongs to H .

Lemma 3.1 (Smola et al. 2007). If EX∼P[
√

k(X, X)] < ∞, µP ∈
H and EP[f(X)] = ⟨f, µP⟩H .

Proof. Let LP be a linear operator defined as LPf := EX∼P[f(X)]. We
assume LP is bounded for all f ∈H , i.e.,

|LPf | = |EX∼P[f(X)]|
(∗)
≤ EX∼P[|f(X)|]
= EX∼P[|⟨f, k(X, ·)⟩H |]

≤ EX∼P

[√
k(X, X)∥f∥H

]
,

where we use Jensen’s inequality in (∗). Hence, by the Riesz represen-
tation theorem (see Theorem 2.4), there exists h ∈H such that LPf =

�

� is infinite dimensional map corresponding to kernel k
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Kernel mean embedding: µP = E
x⇠P�(x)

Fig: [Muandet et al., 2016]
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Neural Network Embedding of Distributions
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Refresher: dual norms
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Covariance Feature Matching IPM

McGan [Mroueh, Sercu and Goel 2017]
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Introduce 2⇥K orthonormal vectors {u1, . . . , uK} and {v1, . . . , vK}.

F = {f!,U,V (x) |U, V 2 Rm⇥K
,

U

>
U = IK ,

V

>
V = IK ,

! 2 ⌦}

And assemble into U = [u1|u2| . . . |uK ] V = [v1|v2| . . . |vK ].

f(x) =

⌦
U

>
�!(x), V

>
�!(x)

↵

=

KX

j=1

[u

>
j �!(x)][�!(x)

>
vj ]

= Trace (U

>
[�!(x)�!(x)

>
]V)
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F = {f!,U,V (x) |U, V 2 Rm⇥K
,

U

>
U = IK ,

V

>
V = IK ,

! 2 ⌦}

And assemble into U = [u1|u2| . . . |uK ] V = [v1|v2| . . . |vK ].

E
x⇠P

f(x) = E
x⇠P

Trace (U

>
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!
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!

(x)

>
]V)

= Trace ( E
x⇠P
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>
[�

!

(x)�

!

(x)

>
]V)

= Trace (U

> E
x⇠P

⇥
�

!

(x)�

!

(x)

>⇤
V)

= Trace (U

>
⌃

!

(P)V)

f(x) =

⌦
U

>
�!(x), V

>
�!(x)

↵

=

KX

j=1

u

>
j [�!(x)�!(x)

>
]vj

= Trace (U

>
[�!(x)�!(x)

>
]V)
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dF (P,Q) = sup
f2F

⇢
E

x⇠P
f(x)� E

x⇠Q
f(x)

�

f(x) = Trace (U

>
[�!(x)�!(x)

>
]V)
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dFU,V,! (P,Q) = max

!2⌦
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U,V 2Om,k

Trace
⇥
U>

(⌃!(P)� ⌃!(Q))V
⇤

Primal
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Trace
⇥
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(⌃!(P)� ⌃!(Q))V
⇤

Primal

Dual

dFU,V,! (P,Q) = max!2⌦ k[⌃!(P)� ⌃!(Q)]kk⇤
Truncated Nuclear Norm
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b) IPM ⌃: Level sets of f(x) =
Pk

j=1 huj ,�!(x)i hvj ,�!(x)i
k = 3, uj , vj left and right singular vectors of ⌃w(P)� ⌃w(Q).

a) IPM µ,2: Level sets of f(x) = hv⇤,�!(x)i
v

⇤
=

µw(P)�µw(Q)
kµw(P)�µw(Q)k2

.

e) hu3,�!(x)i hv3,�!(x)id) hu2,�!(x)i hv2,�!(x)iLevel Sets of c) hu1,�!(x)i hv1,�!(x)i
18
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Experiments
IPM⌃
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Experiments
Conditional generation using the labels on Cifar , with an auxiliary classifier

(CE term) IPM⌃ , k = 16
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Experiments
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Cond (+L) Uncond (+L) Uncond (-L)

L1+Sigma 7.11 ± 0.04 6.93 ± 0.07 6.42 ± 0.09

L2+Sigma 7.27 ± 0.04 6.69 ± 0.08 6.35 ± 0.04

Sigma 7.29 ± 0.06 6.97 ± 0.10 6.73 ± 0.04
WGAN 3.24 ± 0.02 5.21 ± 0.07 6.39 ± 0.07

BEGAN [Berthelot et al., 2017] 5.62

Impr. GAN “-LS” [Salimans et al., 2016] 6.83 ± 0.06

Impr. GAN Best [Salimans et al., 2016] 8.09 ± 0.07

Cifar-10 Inception scores of our models and baselines.

DCGAN architecture, 32x32, with 3 extra layers.
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Covariance Feature Matching GAN

• Efficient: no need to compute the covariance matrix explicitly!

• k-components as in PCA, targeting modes of the data.

• Meaningful and stable loss between distributions.
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Questions?
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