Machine Learning: successes, promises and limits

Al Academy Seminar 13 November 2018, Kortrijk Tom Sercu

Who Am I

- ir. UGent (een burgie)
- Master in Data Science at NYU (New York University)
- Researcher at IBM Research AI
- Published at Speech Recognition and Machine Learning conferences

I am NOT

- Representing IBM (opinions are my own)
- Selling you anything
 - Except truth!
- Funny.
 - but I'll try

Many companies throw money at AI, but few get real returns.

Build better feeling and understanding of Al and its limitations!

$$= \|\boldsymbol{\mu}(\nu_p) - (\nu_q) - \varepsilon \boldsymbol{\mu}(\chi)\|^2$$

= $\|\boldsymbol{\mu}(\nu_p) - \boldsymbol{\mu}(\nu_q)\|^2 - 2 (\nu_p) - (\nu_q), \boldsymbol{\mu}(\chi)$
= MMD^2 , ν_q , $-2 (\nu_p, q, \boldsymbol{\mu}(\chi)) = \varepsilon^2 \|\boldsymbol{\mu}(\chi)\|^2$
= MMD^2 ($\nu = 2\varepsilon \int_{\mathcal{X}} \delta_{p,q}(x) (x) + \varepsilon^2 \|\boldsymbol{\mu}(\chi)\|^2$

My goal is for you to:

3

Build better feeling and understanding of Al and its limitations!

- 1. Successes: Which problems AI is good at.
- 2. Limitations part A: Brittleness by cobbling together.
- 3. Limitations part B: The frontiers. Stuff that's just too difficult for now

My goal is for you to:

1. Successes: Which problems Al (machine learning / deep learning) is good at.

Simple Input -> Output mappings!

"Learning" in ML/DL: collect many input/output examples, black box algorithm (Neural Networks!) will learn to predict the output

Conclusion:

Image Recognition

DOG

Image Recognition

Intermezzo: AI > ML > DL

AI - Artificial Inteligence

- ML Machine Learning
- DL Deep Learning

-> "end to end" learning

NN - Neural Networks

Image search

shutterstuck

toddler doing crafts

Speech Recognition

Machine Translation

- 1. Deep learning.
- 2. Data. Lots of data.
- 3. Compute power.
- 4. Open source software

Main drivers:

2. Limitations part A: ML Patchworks, a necessary evil

Conclusion:

Not every problem is this simple!

Most real problems require cobbling together AI systems: a) makes it work b) makes it brittle

Simple I->O problem with lots of examples?

input: front camera output: steer L/R

yes but..

high quality data

Patchwork solution

ML for real estate price prediction

Intermezzo: computer programs

- Sequence of instructions
- Instructions need to be exact, no ambiguity
- + Correct input: 100% guaranteed output is correct
- Incorrect input: will freak out and stop
- All ML models live in context of classical computer programs
- Combining ML models happens through classical programming: set of precise instructions

Dogs and cats revisited

Classification

Classification + Localization

CAT

CAT

Robot on a mission: catch only cats

Patchwork solution

Pros

- + Get to a solution cheaper & faster
- + Use others' solutions (OS / MLaaS APIs)

Cons

- More engineering to get good performance & you may never get there
- More cost to maintain
- No easy way to generalize vs end to end machine learning: just collect new data

Patchwork solution: Reasons Why

- Not enough data for the whole
 - but data for the sub problems!
- Need for "guarantees" or explainability
- Legacy and history lacksquare
- Spread of teams / skills
- No need for DL expertise

Patchwork solution

- make it work fast
- need to fix it forever

Tough decision

End to end ML solution

- spend more time and money upfront
- more expertise needed to "design it right"
- better performance ullet
- more robust \bullet

Why a patchwork is more brittle than end to end ML solution

- Often subsystem data doesn't exactly match the actual problem
- Errors accumulate
- Model + heuristics combination
 Limited by engineers' imagination
- Needs active human intervention
- More places for bugs to hide

VS

Decision: investing in a patchwork ML solution

3. Limitations part B: Frontiers. Stuff that's just too hard

Conclusion:

Don't believe anyone who sells you "an AI that understands language and reasons about a problem from common sense"

Will consist of simpler components cobbled together or just won't deliver on the promise.

3. Limitations B: Frontiers

'you i i i everything else'

Dan Joyce @dan_w_joyce · Sep 10

dailymail.co.uk

This is nothing. In a few years, that bot will move so fast you'll need a strobe light to see it. Sweet dreams...

alex medina 🥝 @mrmedina we dead

Replying to @zacharylipton @elonmusk

Doctors become irrelevant in a crumbling health service... But AI can save us

Computers could replace doctors, Jeremy Hunt says At the Expo conference in Manchester, Mr Hunt said: 'The changes in medical innovation are likely to transform humanity by as much in the next

3. Limitations B: Frontiers Natural Language Understanding

disambiguition:

(EN: bank)

winograd schemes:

The trophy doesn't fit into the brown suitcase because it's too [small/large].

What is too [small/large]?

dialogue

3. Limitations B: Frontiers

How many slices of pizza are there? Is this a vegetarian pizza?

Does it appear to be rainy? Does this person have 20/20 vision? Visual Question Answering **VQA**

Reasoning

Sheep are afraid of wolves. Cats are afraid of dogs. Mice are afraid of cats. Gertrude is a sheep. What is Gertrude afraid of? A:wolves

Multi agent games

Set of simple reasoning tasks

Task 15: Basic Deduction

Task 16: Basic Induction

Lily is a swan. Lily is white. Bernhard is green. Greg is a swan. What color is Greg? A:white

Only limited scope! **Requires heavy engineering**

3. Limitations B: Frontiers Learning from less (labeled) data

1M labeled images

VS

continuous visual stream, mostly UNLABELED cuddles as reward signal for recognizing papa

3. Limitations B: Frontiers

Congested nose

Causality

Common Cold Coughing

Common Sense aka gezond verstand

Imagine what happens if you open your hand:

VS

Common Sense aka gezond verstand

- Remembering and accessing knowledge
- Provides prior knowledge in new problem
- Intuitive reasoning (by analogy)
- Easily infer causal direction \bullet
- Reduces data hungriness

The holy grail

3

better feeling and understanding of Al and its limitations!

- 1. Successes: Which problems AI / ML / DL is good at: simple Input -> Output problems!
- 2. Limitations part A: Brittleness by cobbling together.
- 3. Limitations part B: The frontiers. Stuff that's just too difficult for now

I hope now you have a

you

Thank you

Al Academy Seminar 13 November 2018, Kortrijk Tom Sercu